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ABSTRACT

Motivation: The precise prediction of one-dimensional (1D) protein
structure as represented by the protein secondary structure and 1D
string of discrete state of dihedral angles (i.e. Shape Strings) is a
prerequisite for the successful prediction of three-dimensional (3D)
structure as well as protein–protein interaction. We have developed
a novel 1D structure prediction method, called Frag1D, based on a
straightforward fragment matching algorithm and demonstrated its
success in the prediction of three sets of 1D structural alphabets, i.e.
the classical three-state secondary structure, three- and eight-state
Shape Strings.
Results: By exploiting the vast protein sequence and protein
structure data available, we have brought secondary-structure
prediction closer to the expected theoretical limit. When tested by
a leave-one-out cross validation on a non-redundant set of PDB
cutting at 30% sequence identity containing 5860 protein chains,
the overall per-residue accuracy for secondary-structure prediction,
i.e. Q3 is 82.9%. The overall per-residue accuracy for three- and
eight-state Shape Strings are 85.1 and 71.5%, respectively. We have
also benchmarked our program with the latest version of PSIPRED
for secondary structure prediction and our program predicted 0.3%
better in Q3 when tested on 2241 chains with the same training
set. For Shape Strings, we compared our method with a recently
published method with the same dataset and definition as used by
that method. Our program predicted at 2.2% better in accuracy for
three-state Shape Strings. By quantitatively investigating the effect of
data base size on 1D structure prediction we show that the accuracy
increases by ∼1% with every doubling of the database size.
Availability: The program is available for download at http://www.
fos.su.se/∼nanjiang/Frag1D/download. Supplementary data are
available at http://www.fos.su.se/∼nanjiang/Frag1D/supplement/
suppl.html
Contact: svenh@struc.su.se
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Predicting protein structures from their amino acid sequences
remains far from solved in spite of decades of efforts by researchers
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from various disciplines. This problem becomes increasingly
important due to the widening gap between the known protein
sequences and determined protein structures as deposited in the
Protein Data Bank (PDB) (Berman et al., 2002). The prediction
of the secondary structure of proteins has long been considered as
an important stage for three-dimensional (3D) structure prediction.
Accurate prediction of secondary structure can improve the
sensitivity of threading methods (Jones, 1999a) and is critical to
many ab initio structure prediction methods (Bradley et al., 2003).
However, for on average ∼40% of all residues in random coils,
the classical secondary-structure representation carries no structural
information. On the other hand, the backbone protein structure is
precisely described by a series of �/� torsion angle pairs, one pair
for each residue, due to the planarity of the peptide bond. The �/�
torsion angle pairs of protein structures are actually clustered into
distinct regions. Therefore the backbone protein structure can be
rather accurately described by a one-dimensional (1D) string of
symbols representing the clustered regions of �/� torsion angle
pairs, called Shape Strings (Ison et al., 2005). Shape Strings describe
not only the conformations of residues in regular secondary-structure
elements, e.g. shape A corresponds to regular α-helix (centered at
� = −61◦, �=−41◦ on the Ramachandran plot) and shape S
corresponds to regular β-sheet (centered at �=−116◦, �= 128◦
on the Ramachandran plot) (Hovmöller et al., 2002). Shape Strings
also classifies residues in random coils into several states thus
containing much richer conformation. It has been shown that Shape
Strings can be used for efficient searching for similar structures in a
database (Shu et al., 2008a) and the precise backbone structure can
be reconstructed from Shape Strings (Gong et al., 2005; Ison et al.,
2005).

Since the first protein structures were solved by X-ray
crystallography, attempts have been made to predict the secondary
structure of proteins as α-helix, β-sheet and random coil from
their amino acid sequences. Chou and Fassman (1974) carried
out the prediction based on simple statistics of the probabilities
of each individual amino acid appearing at each of the three
states, namely H (helix), S (sheet) and R (random coil). Later,
sophisticated algorithms such as neural networks were employed and
the prediction accuracy improved significantly (Kneller et al., 1990;
Rost and Sander, 1993). The accuracy of protein secondary-structure
prediction jumped 5–10% by taking into account the evolutionary
data (Rost and Sander, 1994) which were derived from large families
of homologous sequences. Such sequence families can now be
obtained in an automated manner by sequence searching programs
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Fig. 1. The definitions of eight-state Shape Strings (S, R, U, V, K, A, T, G)
on Ramachandran plot (Ison et al., 2005). The typical Shapes for α-helices
and β-sheets are A and S, respectively. Shape R represents the so-called
polyproline type II structure. Shape K is often found at ends of helices or in
310 helices. T denotes the turn region and G is special for glycine. Three-state
Shape Strings are obtained by mapping S, R, U and V to S, K and A to H,
T and G to T. The Ramachandran plot shown here is a montage from two
plots; the left part shows the Ramachandran plot for all amino acids found in
random coil, while the left half of the figure is that found for all Gly residues.
Both are taken from Hovmöller et al. (2002) with permission.

such as PSI-BLAST (Altschul et al., 1997). Recently developed
methods (Dor and Zhou, 2007; Homaeian et al., 2007; Jones, 1999b;
Wood and Hirst, 2005) are almost without exception based on
sequence profiles generated by PSI-BLAST. The Q3 (overall three-
state per-residue accuracy) for those methods is approaching 80%
and slightly better result may be obtained by combining several
of these methods (Cheng et al., 2007). Only recently, attempts to
predict the conformation of the protein backbone in segments of
random coil have also been made.

Bystroff et al. (2000) predicted 11-state Shape Strings with an
overall MDA score of 58.8%, using a Hidden Markov Model
(HMM). The MDA score is defined as the fraction of residues
that are found in predicted eight-residue segments in which no
predicted �/� angle differs by more than 120◦ from the true
structure. Kuang et al. (2004) predicted three-state Shape Strings
with overall per-residue accuracy of 79.5% and for four-state Shape
String, 78.4%, using Support Vector Machines (SVM). Note that
slightly different definitions on how to discretize clustered regions
of �/� angle pairs on the Ramachandran plot have been used for
these works [see the comparison of different definition in the review
by (Shu et al., 2008a)]. In this study, Shape Strings are defined
according to Figure 1, if not especially mentioned.

We here present a novel method, called Frag1D, for 1D protein-
structure prediction based on a straightforward segment matching.
The basic idea of the fragment matching method is the same as the
nearest-neighbor approach (Yi and Lander, 1993). Both approaches
predict the secondary-structure state of the central residue of a test
segment based on the secondary structure of high-scoring candidate
segments from proteins with known structures. The difference is
how these candidate segments are matched. For the nearest-neighbor
approach, e.g. Yi and Lander’s method, the segment similarity
score is calculated based on a scoring table derived from local
structural environment (Bowie et al., 1991). Those secondary-
structure prediction methods based on the nearest-neighbor approach
generally predicted three-state secondary structure with Q3 ∼70%.
For our fragment matching method, candidate segments are selected

by a profile–profile score [Equation (2)] derived from PICASSO
score (Mittelman et al., 2003) and the profile is created by taking the
advantage of PSI-BLAST (Altschul et al., 1997). Fragment matching
approach has also been used in tertiary-structure prediction, such
as Rosetta (Simons et al., 1999). We for the first time applied
segment matching method based on profile–profile scores to 1D
structure prediction and obtained satisfactory results. A standard
leave-one-out cross-validation on a non-redundant dataset of PDB
chains cutting at 30% sequence identity shows that our method
predicts 82.9% of all residues correctly as α-helix, β-sheet or
random coils. For Shape String predictions, S3 (overall three-
state Shape String per-residue accuracy) is 85.1% and S8 (overall
eight-state Shape String per-residue accuracy) is 71.5%. Three-
state Shape Strings are better predicted than three-state secondary
structure. This is because the baseline for three-state Shape String
prediction is higher than that for three-state secondary structure.
The average abundance of the three secondary-structure states
H, S and R are 38.1, 21.7 and 40.3%, respectively (Table 3).
Therefore, a random guess of the secondary structure will yield
Q3 = (0.3812 + 0.2172 + 0.4032) = 35.5%. For three-state Shape
Strings, the average compositions for H (A+ K), S (S + R + U + V)
and T (T + G) are 51.7, 42.6 and 5.7%, respectively, and thus the S3
of a random guess is (0.5172 + 0.4262 + 0.0572) = 45.2%. It has long
been a topic of discussion that the accuracy of secondary-structure
prediction increases as the size of the database increases, even if
the method has not been improved. We show here for the first time,
that the accuracy of the secondary-structure prediction increases by
∼1% with every doubling of the database, thus giving a quantitative
answer to the question of the effect of the size of the database on
the prediction accuracy.

2 MATERIALS AND METHODS

2.1 Database preparation
The dataset we used in this work was a non-redundant set of protein chains
in PDB (as of June 2007) culled at 30% sequence identity by the PISCES
server (Wang and Dunbrack, 2003), containing 5860 chains (1 480 756 amino
acids). Out of these 5860 chains, two subsets, one with 4103 chains culled
at 25% sequence identity, and another with 3255 chains at 20%, were also
created (see Supplementary Material) to test the uniqueness and the size of the
database on the prediction accuracy of the method. The three-state secondary
structure (H: helix, S: sheet and R: random coil) of proteins was defined by
converting the eight-state DSSP (Kabsch and Sander, 1983) definition with
the scheme: H, G and I to H, B and E to S and the rest to R. The eight-state
Shape String is defined according to Figure 1. The three-state Shape String
was transformed from eight-state Shape String with the following scheme:
S, R, U and V to S, K and A to H, T and G to T.

2.2 Profiles
Sequence profiles were obtained by running PSI-BLAST (Altschul et al.,
1997) against the NCBI nr database (July 2007) with three iterations and the
e-value of 0.001. Moreover, for the protein sequences of the training set, we
have enriched sequence profiles by structural profiles generated from blocks
of Shape Strings (Ison et al., 2005) (called FragAcc). Sequence and structural
profiles were combined linearly according to Equation (1) by following the
work of Teodorescu et al. (2004)

Fij = (1−weight)∗Qij +weight∗Sij (1)

where Qij is the sequence profile generated by PSI-BLAST, Sij is the FragAcc
and Fij is the combined profile. The weight was set to 0.4 in this work. The
effect of combining FragAcc in profiles is discussed in the discussion section.
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The block of Shape Strings for a nine-residue fragment was built by
searching the Shape String of this fragment in all other nine-residue long
Shape Strings in the training set for similar Shape Strings. The corresponding
amino acids of the Shape Strings in the block are used to build the substitution
matrix [see the Supplementary Material in Shu et al. (2008b) for more
details]. FragAcc carries the amino acid substitution information among
similar local structures.

2.3 Structure prediction
A leave-one-out cross-validation procedure was carried out to evaluate the
prediction. For each target chain, a sliding window of nine amino acids with
their respective profiles, in this chain to be predicted, was searched among all
the 1.48-million nine-residue segments in the other 5859 protein chains. At
each position of a target sequence, the 100 segments with the highest profile–
profile scores were kept, together with the accompanying PDB chain ID and
positions in the sequence. The profile–profile score between two compared
nine-residue segments was defined by

Score(α,β)=
9∑

n=1

(
20∑

i=1

(αni log(βni/Pi)+βni log(αni/Pi))

)
(2)

where α and β are profiles for the two compared nine-residue segments
respectively and P is the background frequency for 20 standard amino acids.
This profile–profile score was derived from PICASSO score (Mittelman
et al., 2003). For the target sequence, the profile was just the sequence
profile generated by PSI-BLAST, while for candidate sequences, profiles
were combined from sequence and structural profiles, i.e. FragAcc, according
to Equation (1). These top 100 segments with highest profile–profile scores
were further sorted by the weighted profile–profile score and only the top 10
were kept after re-sorting. The weighted profile–profile score is defined as

Score2(α,β)=
9∑

n=1

{
Pinfon ∗

(
20∑

i=1

(αni log(βni/Pi)+βni log(αni/Pi))

)}
(3)

where Pinfon is the information score which is defined as

Pinfon = (1−
20∑

i=1

(Xni ∗Xni)∗(1−
20∑

i=1

Xni ∗Xni)) (4)

where Xni = (qni/pi)/
∑20

i=1(qni/pi),i=1,2,3, ... ,20,qni denotes the
probability for amino acid i at position j in the profile, pi is the background
frequency for amino acid i. Equation (4) is empirical; the closer the profile
is to the background composition, the larger the Pinfo score is. This score
ranges from 0 to 0.90. Score2 [Equation (3)] was assigned to each of these
selected segments.

Not all of these 10 selected nine-residue segments were used to predict
the local structure of the query segment, nor were they used with equal
weights. Albeit the dataset was culled at 30% (or 25 or 20%) sequence
identity, homologues to the target chain may still exist in the training set
and our Segment Matching Method can detect them very accurately [see a
brief description of the Segment Matching Method for finding homologues
below and see also Shu et al. (2008b) for the definition of homology score.
Details about this method are described in the Supplementary Material]. The
number of segments which were actually used for secondary structure and
Shape String prediction depended on whether presumed homologue(s) were
detected or not for the target chain. If a homologue to the target chain was
predicted, only the top five segments were used for predicting the secondary
structure, since the conformation of the selected segments were believed to
be closer to the native conformation of the target protein to be predicted at
that position. Otherwise the top 10 were used. Among these 5 or 10 segments
actually used for local structure prediction, some may belong to the predicted
homologues. Their scores [Score2 defined by Equation (3)] were multiplied
by a factor between 1 and 3 based on the homology score (i.e. how sure we
are that this is really a homologue to our target protein).

The probability for a residue of the target appearing at each state (H,
S or R for the three-state secondary structure and S, R, U, V, K, A, G or

Fragment matching: find 100 top candi-
date fragments for each target fragment 

Predict the state of 1D structure based on the 
weighted frequency of 1D structure states

among matched candidate fragments 

Build the structural profile for the 
target chain based on the predicted 

1D structure and merge it to the 
profile of that target chain 

Given a target sequence 

Output the result after two 
iterations

Fig. 2. Outline of the 1D structure prediction procedure.

T for the eight-state Shape Strings) was predicted as the sum of weighted
scores of all matched segments with the state of the residue aligned at that
position equaling that state. As mentioned above, if there are homologues
detected for the target chain, the top five candidate fragments for each
position are used for prediction, and otherwise the top 10 are used. Since
a residue in a nine-residue target segment may be aligned to at most nine
positions of a candidate segment, there are in total at most either 45 or 90
candidate segments aligned to a target segment depending on whether there
are homologues predicted for this target chain or not (see Supplementary
Fig. 1 for an example). The state with the highest probability was predicted
as the secondary structure or Shape String state for that residue. In case of
equal probability, the secondary structure was predicted in descending order
as R, S and H, and the Shape String in the order of G, T, V, U, K, S, R
and A. We have noted that S was often under-predicted. In order to remedy
this, an empirical 3% probability score was added to the S state. The thus
calculated probability for the residue to be predicted on each state was taken
as the raw confidence of the prediction. However, the Q3, S3 and S8 were on
average 5–10% better than this raw confidence. We thus normalized this raw
confidence, such that for a prediction with a given confidence, one might on
average expect the Q3, S3 and S8 accuracy to be the same as the confidence.
The raw confidence was normalized by a linear function: y = ax+b, where x
is the raw confidence and y is the normalized confidence. The parameters a
and b were obtained by first plotting raw confidence against the real Q3, or S3
or S8, and then made a linear regression (see also Supplementary Fig. 3 for
the relationship of raw confidence and real Q3 as well as the linear function).

After the prediction was made, we obtained the 1D structure of target
chains with an expected high accuracy. Therefore, we can again build
structural profiles for target chains from the predicted 1D structure and
then enrich profiles of target chains by these structural profiles. A second
round of prediction was thus carried out with the same setting as the first
round, but now the profiles of target chains were enriched by structural
profiles built from predicted 1D structure. The whole prediction procedure is
outlined in Figure 2. In principle this procedure can be iterated many rounds
until it converges. However, we noted that Q3 dropped already at the third
round. This is most probably because the inaccuracy of structural profiles
embedded in the predicted 1D structure accumulates quickly as the iteration
procedure progresses and thus the gain by using such structural profiles
is soon counteracted by the loss caused by the accumulated inaccuracy.
Therefore, the final results were obtained from the second round.

The principle of the Segment Matching Method for homology detection
is that among the tens of thousands of nine-residue segments (100 per
each segment) with high profile–profile scores to the corresponding query
fragment in the target protein chain, many are from a few candidate chains.
Consider, for example, a 200 amino acid long protein chain; 192×100 =
19 200 segments will be selected. With nearly 6000 protein chains in the data

472

 at S
tockholm

s U
niversitet on M

arch 25, 2010 
http://bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org


[11:00 25/1/2010 Bioinformatics-btp679.tex] Page: 473 470–477

Accurate one-dimensional protein structure prediction

set, the average chain will be represented by about three segments. However,
we very often found a few candidate chains having very many segments (from
10 to sometimes over 100) with high profile–profile scores to segments of the
target chain. These candidate chains are potential homologues to the target
chain. The positions of the fragments in the target sequence were plotted
against the positions of the matched fragments in the candidate sequence
on a two-dimensional (2D) dot-plot diagram. Only when these dots formed
long consecutive lines were they a strong indication of homologous chains.
A homology score is derived from the pattern of these 2D diagrams. More
than 90% of the predicted homologues with a homology score larger than
30 were indeed (remote) homologues (Shu et al., 2008b).

3 RESULTS AND DISCUSSIONS

3.1 Secondary-structure prediction
Asolid leave-one-out cross-validation on 5860 non-redundant chains
shows our program predicted three-state secondary structure with
Q3 of 82.9% (Table 1). For 90% of all amino acids with the highest
confidence, 86% are correctly predicted as being part of α-helix,
β-sheet or random coil (Fig. 3). Note that these residues were
identified only from their predicted confidence. This means that not
only do we get a good overall score of Q3, but we have also identified
quite well at which parts of the sequence the prediction is unsure.

Segment overlapping measure (SOV) score is considered as a
more precise measure of the prediction of the secondary structure
since it treats the secondary-structure elements as whole units (Rost
et al., 1994; Zemla et al., 1999). For an α-helix predicted wrongly
at every other residues, the Q3 will still be 50% but the prediction
is actually meaningless since the whole α-helix at this location is
missed. The SOV score will be zero for such a prediction since the

Table 1. Q3 and SOV for protein secondary-structure prediction on 5860
chains (numbers given in percentages)

Helix Sheet Random coil All

Q3 89.0 78.8 79.4 82.9
SOVa 89.7 81.9 76.4 82.6

aThe normalized SOV was calculated based on a method introduced by Zemla et al.
(1999).
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Fig. 3. Correctly predicted secondary-structure (Q3) and Shape Strings (S3
and S8) as a function of all residues above a certain confidence. For example,
for ∼80% amino acids predicted with highest confidence, Q3, S3 and S8 are
roughly 88, 92 and 79%, respectively.

prediction at this location is not identified as an α-helix. On the other
hand, SOV neglects errors at the beginning or end of the α-helix
and β-sheet if the core region is correctly predicted. Our program
predicted these 5860 chains with an SOV score of 82.6% and Q3
of 82.9% (Table 1), which means our program not only predicted
overall residues correctly but also the core regions of secondary
structure elements correctly.

Many of the amino acids that are hard to predict are at the
beginnings or ends of α-helices or β-strands (Fig. 4), having nearly
equal indications for random coil or α-helix or β-sheet, respectively.
In strong contrast, the nearest amino acids before or after are usually
correctly predicted. The ends of α-helices and β-strands are often
distorted. It is a matter of definition which secondary structure to
assign for amino acids at these distorted regions. DSSP (Kabsch
and Sander, 1983) puts a high weight on the hydrogen-bonding
scheme for defining α-helix or β-sheet. In contrast, when Shape
Strings (Ison et al., 2005) are used for defining the conformations
of amino acids, only the torsion angles of the polypeptide backbone
are used. For Shape Strings, the �/� torsion angles are clustered
in eight regions (Fig. 1). For each conformation state, the standard
deviations for torsion angles of amino acids are ∼15–20◦ around
the center of each region. As many as 47.2% of all α-helices are
ended with an amino acid in K-shape, while most (∼50.9%) of all
β-strands are ended with an amino acid in R-shape. Indeed, for those
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Fig. 4. The distribution of Q3 at the beginning, middle and end of (a) α-
helices and (b) β-strands. For α-helices, the ends were predicted at lower Q3
accuracy than the beginnings while for β-strands, the beginnings and ends
were equally well-predicted, resulting in a symmetric pattern. In general,
the longer the α-helices or β-strands were, the more accurately their central
residues were predicted. While short β-strands, i.e. three residues long, are
hard to predict, the central amino acids in α-helices of average length (∼10.5
amino acids) are correctly predicted in over 95% of the cases.

473

 at S
tockholm

s U
niversitet on M

arch 25, 2010 
http://bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org


[11:00 25/1/2010 Bioinformatics-btp679.tex] Page: 474 470–477

T.Zhou et al.

Table 2. Comparison between PSIPRED and our method Frag1D (numbers
given in percentages)

Helix Sheet Random coil All

Q3 Frag1D 88.4 75.1 76.1 80.8
PSIPRED (version 2.61) 86.1 72.8 79.1 80.5

SOV Frag1D 88.3 78.6 73.5 80.4
PSIPRED (version 2.61) 86.6 77.9 75.6 80.4

amino acids with wrongly predicted secondary-structure, many are
predicted with correct Shape String.

We also benchmarked our method with one of the most successful
secondary-structure predictors, PSIPRED (Bryson et al., 2005)
version 2.61. For the training set, we used the same 6598 chains
that were used to build PSIPRED2.61 weighting files. For getting
the testing set, all chains from PDB (as of June 2009) were filtered
with the criteria that those chains with more than 30% sequence
identity to any chain in the training set were removed. The remaining
chains were further cut down to <30% sequence identity. This
resulted in 2421 testing chains, with half of them (53%) submitted
to PDB after 2007. See also the Supplementary Material for lists of
training and test sets and a detailed description of how the testing
set was generated. As shown in Table 2, our method predicted the
secondary-structure 0.3% better than PSIPRED in Q3. A closer
analysis of the 6598 chains in the training set shows that they
have high redundancy. When cutting at 30% sequence identity, these
6598 chains were reduced to 3643. We carried out the secondary-
structure prediction also for the same test set on this new training
set of 3643 chains and obtained the same Q3, 80.8%. This means
that the addition of many redundant, closely related sequences in a
training set does not improve the secondary-structure prediction, at
least not for our method. Although Frag1D predicted only 0.3%
better Q3 compared to PSIPRED, it predicted 2.3% better for
helices and sheets (Table 2). The fact that Frag1D and PSIPRED
predicted differently on helices, sheets and random coils, may benefit
consensus methods such as JPred (Cole et al., 2008) which combine
the results of other original, independent methods to take the merits
of these two methods to obtain a higher accuracy. Frag1D is also
computationally comparable to PSIPRED. It takes ∼10 min for
Frag1D to predict a protein sequence with 300 amino acids running
on a PC with 2 GHz CPU and 1 GB memory, while it takes ∼9.5 min
for PSIPRED, given the current NCBI nr database (with 6.5-million
sequences) and PSI-BLAST v2.2.17.

3.2 Shape string prediction
The 1D string of secondary-structure describes the protein backbone
structure concisely, but for on average ∼40% of all residues locating
in so-called random coils, the secondary-structure description carries
no information about the conformation. The ‘random coil’ is
an unfortunate wording, since there are many kinds of distinct
conformations in this category. The Shape String concept describes
accurately the conformations of all amino acids, including those
in random coil. Thus, the prediction of Shape Strings makes it
possible to build a tentative native 3D structure. Although each
shape symbol represents a rather large area (Fig. 1), with torsion
angles φ and ψ spreading in the order of ±20◦, many native local
structure fragments of proteins with the same Shape Strings are

Table 3. The relationship between the three-state DSSP and three-state
Shape String

DSSP

Shape Helix Sheet Random coil Sum

Shape H (A+ K) 37.8 0.7 13.2 51.7
Shape S (S + R + U + V) 0.1 20.8 21.7 42.6
Shape T (T + G) 0.2 0.2 5.3 5.7
Sum 38.1 21.7 40.3 100

All numbers are given as percentage of all combinations. For example, almost all amino
acids being Helix or Sheet according to DSSP have H or S shape, respectively, but the
reverse is not true. As many as half of the amino acids with S shape are actually found
in stretches of random coil.

quite similar in 3D (see Supplementary Fig. 2 for an example). This
is probably because the conformation space for native structures of
proteins is limited. Gong et al. (2005) also proved that it is possible
to rebuild native protein conformation from highly approximated
torsion angles grouped into 36 labelled, 60◦ ×60◦ grid squares,
each called a mesostate. Therefore, if the predicted Shape Strings are
correct enough (since we have a reliable confidence estimation of the
prediction, more accurately predicted chains can be identified), it is
possible to build the backbone structure of the protein, or part of the
protein. The proportions of the eight different shapes are, on average
45.2% A, 24.4% S, 16.1% R, 6.3% K and 4.4% T and just above 1%
each of the three less common shapes; 1.3% U, 1.2% V and 1.2%
G (Supplementary Table 1). The shapes of regular α-helices and β-
strands are A and S, respectively. Although only 38.1% of all amino
acids are in α-helices, 45.2% have A shape, because many individual
amino acids in random coils also have A-shape, but they are not
considered being α-helical unless at least four consecutive amino
acids have A shape. Sometimes, three consecutive amino acids with
A-shape are considered forming a 310 helix, denoted G in DSSP.
Many β-strands are distorted from the ideal S-shape. Thus, many β-
strands contain one or more amino acids with R, U or V shape,
although they are annotated as E-state in DSSP. The secondary
structure can be defined by Shape Strings, using the scheme: (i) three
or more consecutive A-shape is helix; (ii) two or more consecutive
S-shape is sheet. The relationships between eight-state DSSP and
eight-state Shape String are shown in Table 3. It is obvious that the
DSSP and Shape String definitions are quite different.

We predicted Shape Strings of all the 5860 protein chains,
concomitantly with and in a similar way as the secondary-structure
prediction. Obviously, the prediction of Shape Strings is on the one
hand harder but on the other hand more informative, with eight
rather than three categories. A random guess of secondary structure,
given the condition that the proportions must be correct, i.e. 38.1%
α-helix, 21.7% β-sheet and 40.3% random coil, results in 35.5% Q3
(0.3812 + 0.2172 + 0.4032), but for eight-state Shape Strings, only
29.6% S8. We predicted secondary-structure at 82.9% Q3 and eight-
state Shape Strings at 71.5% S8. An intermediate description is to
define only three different shapes (A+K 51.7%, S + R + U + V 42.6%
and T+G 5.7%). Here a random guess gives 45.2% S3, while we
obtained 85.1% S3. Kuang et al. (2004) predicted three-state Shape
Strings on a smaller dataset containing 1296 protein chains, cutting
at ≤20% sequence identity and obtained 79.5% S3. The definition
used by Kuang et al. is rather similar to that defined in Figure 1
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Fig. 5. The local structure prediction results (Q3, S3 and S8) increase by ∼1% for every doubling of the number of used non-redundant protein structures.
The relation between (a) Q3, (b) S3, (c) S8 and the size of dataset. For a given number of protein chains used, the prediction decreases if stricter criteria are
used for non-similarity between the used proteins. When all the 5860 protein chains with <30% sequence identity were used, Q3, S3 and S8 are 82.9, 85.1
and 71.5%, respectively.

Table 4. Results of Shape String prediction on 5860 chains (numbers given
in percentages)

At helix At sheet At random coil Total

S3 94.7 89.9 72.6 85.1
S8 91.4 72.8 50.8 71.5

(agreed on 98.5% of all residues for three-state Shape Strings). Our
method predicted 81.1% S3 on that dataset with our definition and
81.7% with Kuang’s definition. This means our method Frag1D
predicted three-state Shape Strings with 2.2% higher in S3. The
relation between three-state Shape Strings and three-state secondary-
structure from DSSP is shown in Table 3. For 80% of amino acids
with highest confidence, the three- and eight-state Shape Strings
were predicted at 92% S3 and 79% S8, respectively (S3 and S8 in
Fig. 3).

3.3 Improved predictions with larger data sets
To investigate the effects of the sequence identity cutting level
and the size of the dataset on Q3, S3 and S8, the 5860 chains
having ≤30% sequence identity were further culled at 25% (4227
chains) and 20% (3338 chains) sequence identity levels (Wang and
Dunbrack, 2003). For each of these data sets, the chains were divided
randomly into two groups with the same number of chains. These
two subgroups were further divided into 4, 8, 16 and 32 equal groups.
Predictions were made for each subgroup. As shown in Figure 5,
every doubling of the number of sequences used for the training set
leads to on average ∼1% increase in Q3, S3 and S8.

3.4 Comparison of the predicted secondary structure
and Shape String

The secondary-structure prediction predicts the protein backbone
structure as a set of α-helices, β-sheets and random coils. For the
Shape String prediction, the protein backbone is predicted as a set
of discretized torsion angles, one symbol for each residue. The main
advantage of the Shape String prediction is that, unlike secondary
structure prediction, it predicts the conformation for every amino
acid. The S3 and S8 for Shape Strings at random coils is 72.6 and
50.8%, respectively (Table 4).

Residue 46-48

Residue 17-29

Residue 176-184

...RRRRRRRRRRRRR...HHH...SSSSSSSSS...

...RRRRRRRRRRRRR...HHH...SSSSSSSSS...

...RSRSKSSRKRRSR...RTT...RSASSSRSS...

...RSRRKSSRKRRSR...RTT...SRASSSRSS...

Observed Seca

Predicted Seca

Observed Shapeb

Predicted Shapeb

Residue 46-48 Residue 176-184Residue 17-29

aSecondary structure 
bShape String

Fig. 6. An example (chain 1NOXA) for predicted secondary structure and
predicted eight-state Shape Strings. The chain 1NOXA was predicted at 90%
Q3 based on the leave-one-out cross-validation on 5860 chains, which is
better than the average Q3 of 82.9%. However, ∼20% of all chains were
predicted at better Q3 than this example. Our program predicted both the
secondary structure and eight-state Shape String correctly at three segments
highlighted in the figure. Note that for the random coil segment (residues
17–29), the Shape String is actually quite rich in conformation but our
program predicted such detailed conformation correctly. The illustration of
the 3D structure of 1NOXA was drawn by PyMOL (DeLano, 2002).

Moreover, in the secondary-structure description, a unique symbol
denotes α-helices or β-sheets. This means α-helices and β-sheets are
treated as straight rods and strands, but in reality the torsion angles
for α-helices or β-sheets are not always the same throughout the
backbone. In contrast, Shape Strings depict the possible distortions
within α-helices or β-sheets (see an example in Fig. 6) and thus may
facilitate the 3D structure modelling from predicted 1D structure.

The existence of remote homologues (if detected), even at a
dataset cutting at 30% (or 25 or 20%) sequence identity, do improve
the prediction of secondary structures and Shape Strings. As shown
in Table 5, although the Q3 for all 5860 chains cutting at 30%
sequence identity level was 82.9%, the Q3 for those 4194 chains
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Table 5. The prediction on those chains with and without homologues
predicted, for datasets cutting at 30, 25 and 20% sequence-identity level,
respectively

Dataset ≤30% ≤25% ≤20%

Homologuea Yes No All Yes No All Yes No All

No. of chains 4194 1666 5860 2394 1833 4227 1327 2011 3338
Q3 (%) 84.7 77.1 82.9 83.2 77.6 81.1 81.1 77.8 79.2
S3 (%) 86.6 80.2 85.1 85.2 80.6 83.5 83.5 80.7 81.9
S8 (%) 73.0 66.6 71.5 71.4 66.9 69.7 69.3 66.9 68.0

We used ‘predicted homologues’ instead of ‘real homologues’ as defined by SCOP
(Andreeva et al., 2004) to show the effect of the existence of potential homologues on
prediction results because for one thing, about half of all 5860 chains are not annotated
in the latest SCOP database, making it impossible to do the statistics; and for another,
only the knowledge of ‘predicted homologues’ can be obtained for unknown structures.
aIn the row of homologue: ‘Yes’means for chains with at least one homologue predicted;
‘No’ means for chains with no homologue predicted; ‘All’ means for all chains.

of which at least one homologue was predicted, was as high as
84.7%. For the other 1666 chains, for which no homologue was
predicted in the training set, the Q3 was only 77.1%. Q3 decreases
as the dataset is cut at lower sequence identity level. For the chains
with homologues predicted, Q3 drops from 84.7 to 83.2 to 81.1% as
the sequence identity cutting level is lowered from 30 to 25 to 20%.
This is because fewer homologues exist and they are also becoming
more distantly related as the sequence identity cutting level becomes
more restricted. However, for those chains without any homologues
detected, Q3 varies insignificantly for datasets cutting at different
sequence levels. For details, see Table 5. The results also show that
for really hard cases where no homologues exist, our method can
predict the secondary structure at an average Q3 of ∼77.5%. Note
that for most published works tested on so called non-redundant
datasets cutting at either 30% sequence identity or zero HSSP
distance, many homologues still exist.

3.5 How to use the potential homologues in 1D
structure prediction?

As mentioned in ‘Materials and methods’ section, different numbers
of candidate segments were used to predict the conformation state of
the target depending on whether there were predicted homologues
for the target or not. One may argue that the 1D structure can
be directly predicted from homology modelled structures if a
homologue exists and can be detected. However, we observed that
the secondary-structures predicted by our method were significantly
more accurate than those directly generated from homology
modelled structures. For 50 randomly selected chains predicted at
Q3 varying from 75 to 90%, the average Q3 for our method Frag1D
was 85.8% but the Q3 for the secondary-structure generated from
homology modelling was only 72.8%. The homology modelling was
carried out by MODELLER9v6 (Marti-Renom et al., 2000) with
default settings (the list of these 50 randomly selected chains and
templates used to build models can be found in the Supplementary
Material). The structure variations between remote homologues are
usually quite big so that their secondary structures do not agree very
well. However, the secondary-structure prediction based on segment
matching predicts the conformation of local structures from a broad

Table 6. Comparison of predictions using sequence profiles (Qij) and
enriched profiles (Fij) (numbers given in percentages)

Q3 S3 S8

Qij profile 82.0 83.4 69.5
Fij profile 82.9 85.1 71.5

range of similar local structures and may thus recover the variation
between individual homology pairs.

3.6 Incorporation of structural information in profiles
Sequence profiles built from large families have been used
extensively for the effective detection of homologues and
structurally similar local structures (Eddy, 1996; Madera and Gough,
2002; Rangwala and Karypis, 2005; Sadreyev and Grishin, 2003;
Soding, 2005). Therefore, profiles were used to search for candidate
segments instead of the amino acid sequence alone in our methods,
just as in most other recently developed methods. However, for a
protein whose existing family contains too few sequences or are
strongly biased, the profile built from that sequence family tend to
be so poor that true homologues cannot be detected. Moreover, for
the segment matching method, all candidate segments with similar
local structures to the target can be used. It is not necessary that
the whole protein is homologous to the target chain. Therefore, we
enriched the sequence profile by FragAcc which were derived from
blocks of similar Shape Strings. As shown in Table 6, the average
Q3, S3 and S8 for all 5860 chains increased by ∼1, 1.6 and 2%,
respectively, by using enriched profiles.

4 CONCLUSIONS
We have presented a new method for predicting 1D protein
structures, i.e. secondary structures and Shape Strings, based on
a straightforward segment matching. Our method predicted protein
secondary-structure at 82.9% Q3 when tested on 5860 chains, a
non-redundant set of PDB, cutting at 30% sequence identity. It also
predicted Shape Strings with 85.1% S3 (overall three-state Shape
String per-residue accuracy) and 71.5% S8 (overall eight-state Shape
String per-residue accuracy) on the same dataset. At this level of
accuracy, the predicted secondary-structures, together with predicted
Shape Strings will be very helpful for tools to build 3D structure
models. By performing our program on a series of evenly divided
datasets, we showed that the accuracy of the secondary-structure
prediction increases by ∼1% with every doubling of the database
size. Since Shape Strings describe not only the conformation of
regular secondary-structure elements, but also random coils in detail,
the predicted Shape Strings might be used as a powerful starting
point for 3D structure modeling. This is our further goal.
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